MATH 512, SPRING 17 HOMEWORK 3, DUE WED MARCH 22

Recall that \mathbb{P} is homogeneous if for every $p, q \in \mathbb{P}$, there are $p' \leq p, q' \leq q$, such that for every generic G with $p' \in G$, there is a generic H with $q' \in H$ such that V[G] = V[H]. Equevalently there is an isomorphism between $\{r \in \mathbb{P} \mid r \leq p'\}$ and $\{r \in \mathbb{P} \mid r \leq q'\}.$

Problem 1. Show that the Levy collapse $Col(\kappa, \lambda)$ is homogeneous.

For the next two problems, let U be a normal measure on $\mathcal{P}_{\kappa}(\lambda)$ and define the supercompact Prikry forcing with respect to U, \mathbb{P} as follows. Conditions are of the form $\langle x_0, ..., x_{n-1}, A \rangle$, where each $x_i \in \mathcal{P}_{\kappa}(\lambda), A \in U$ and for all $i < n-1, x_i \subset x_{i+1}$ and $|x_i| < |\kappa \cap x_{i+1}|$ (this is denoted by $x_i \prec x_{i+1}$). Given $q = \langle x_0^q, ..., x_{k-1}^q, A^q \rangle$ and $p = \langle x_0^p, ..., x_{n-1}^p, A^p \rangle$, we have that $q \leq p$ if:

- $k \ge n$, for each $i < n, x_i^q = x_i^p$, for each $n \le i < k, x_i^q \in A^p$,
- $A^q \subset A^p$.

Problem 2. Show that if G is \mathbb{P} -generic, then in V[G], every V-regular cardinal τ with $\kappa \leq \tau \leq \lambda$ has cofinality ω .

Note: \mathbb{P} preserves κ and cardinals above λ ; by the above it follows that $(\kappa^+)^{V[G]} = (\lambda^+)^V.$

Problem 3. Show that \mathbb{P} is homogeneous.

Problem 4. Suppose that j is a λ -supercompact embedding with critical point κ . Let $\kappa \leq \tau < \lambda$ be a regular cardinal. Show that $U := \{X \subset \tau \mid$ j" $\tau \in j(X)$ } is a normal measure on $\mathcal{P}_{\kappa}(\tau)$. Define $k : Ult(V, U) \to M$ by $k([f]_U) = jf(j^{"}\tau)$. Show that k is elementary and that $j = k \circ j_U$.

Problem 5. Suppose that κ is indestructible supercompact. I.e. after κ directed closed forcing κ remains supercompact. Show that GCH fails.

Problem 6. Suppose that $j: V \to M$ is a μ -supercompact embedding with critical point κ . Suppose that \mathbb{P} is a poset of size at most μ . Show that $M[G]^{\mu} \cap V[G] \subset M[G].$

For the next few problems, suppose that in V, κ is supercompact and $2^{\kappa} =$ κ^+ . Let $\mathbb{P} = \langle \mathbb{P}_{\alpha}, \dot{\mathbb{Q}}_{\alpha} \mid \alpha \leq \kappa \rangle$ be an Easton support iteration, such that for each inaccessible α , $\dot{\mathbb{Q}}_{\alpha} = Add(\alpha, \alpha^{++})$, and it is the trivial poset otherwise. Denote $\mathbb{P}_{\kappa} = \langle \mathbb{P}_{\alpha}, \dot{\mathbb{Q}}_{\alpha} \mid \alpha < \kappa \rangle$. In particular, $\mathbb{P} = \mathbb{P}_{\kappa} * \dot{Add}(\kappa, \kappa^{++})$.

Problem 7. Let $j: V \to M$ is a λ -supercompact embedding where $\lambda \geq \kappa^{++}$. Show that we can lift j to $j': V[G] \to M^*$, where G is \mathbb{P}_{κ} -generic. Note that here you have to analyze what poset is $j(\mathbb{P}_{\kappa})$ and in particular find a generic G^* for it such that $j^{"}G \subset G^*$.

Problem 8. Let $j': V[G] \to M^*$ be the lifted embedding from last problem, where G is \mathbb{P}_{κ} -generic. Now show we can lift j' to $j'': V[G][H] \to M^{**}$, where H is $Add(\kappa, \kappa^{++})$ -generic over V[G].

Problem 9. Let $j'' : V[G][H] \to M^*$ be the lifted embedding from last problem. Say $j'' \in V[G][H][K]$. Show that there is a normal measure on κ in V[G][H].

Note: by similar arguments we can actually show that κ is supercompact in V[G][H].

Problem 10. Suppose that $V \subset W$ are two models of set theory, such that $(\aleph_{\omega+1})^V = (\aleph_2)^W$. Show that $W \models 2^{\omega} \ge \aleph_2$. (Use that in $V, \aleph_{\omega}^{\omega} \ge \aleph_{\omega+1}$.)